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Abstract

In this paper we study the effect of elastic matrix constraint on the tensile deformation of an active NiTi shape

memory alloy fiber, which, when no matrix constraint is present, will experience stress-induced phase transformation by

nucleation and growth of a macroscopic martensite band. The effect of the constraint is measured by two factors: the

relative Young�s modulus (by dimensionless parameter Eð2Þ=Eð1Þ) and the relative dimension (by dimensionless

parameter h=a) of the fiber and the matrix. The transformation process of the fiber through the martensite band growth

under tension is modeled as an embedded elastic fiber containing growing cylindrical transformation inclusions. By

Love�s stress function, the elastic solutions of the inclusion–fiber–matrix system as well as the internal elastic energy

during the transformation are obtained. Analytical expressions of the free energy of the system during the transfor-

mation are also formulated for the case of uniaxial tension. After introducing the band nucleation and growth criteria,

the growth capability of a martensite band is examined. The results demonstrate that, depending on the magnitude of

the matrix constraint, three distinct deformation patterns of the fiber exist: (1) with weak matrix constraint, single band

growth dominates the transformation process of the fiber; (2) with intermediate matrix constraint, sequential bands

nucleation and growth prevails in the fiber; and (3) with strong constraint, numerous bands form and grow, and

macroscopically the fiber tends to deform homogeneously. Parametric studies on the macroscopic stress–strain response

of the fiber–matrix system are performed and the obtained results are discussed.
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1. Introduction

In the last decade, intensive research has been done on the deformation of thermoelastic solids under-

going martensitic phase transition (such as NiTi polycrystalline superelastic shape memory alloy (SMA)
fibers, strips and tubes under tension). Systematic experiments (e.g., Shaw and Kyriakides, 1995; Miyazaki

et al., 1982) demonstrated that the deformation of a NiTi superelastic fiber or strip is realized by the

nucleation and propagation of one or several transformation bands, similar to the Luders bands phe-

nomenon in mild steels. The intrinsic mechanisms underpinning this inhomogeneous deformation, though

known in certain degree, are still being investigated. One of the explanations is that macroscopic consti-

tutive relation of the material exhibits a kind of strain softening (during transformation) and rehardening

(after exhaust of transformation) in a so-called up-down-up nonlinear fashion as first introduced by

Ericken (1975). In the theoretical aspect, considerable efforts have been devoted to the study of such
constitutive relations and related structure responses. Significant progress has been achieved in under-

standing and modeling the behaviors of materials during phase transition (e.g., Triantafyllidis and Bar-

denhagen, 1993; Abeyaratne and Knowles, 1990, 1993; Coleman, 1983).

Parallel to the above fundamental research, Cu- and Ni-based shape memory alloys have been suc-

cessfully embedded in elastic or elastoplastic matrix as the active elements in composite materials and also

in conventional structures to achieve certain control, sensing or actuating functions (e.g., Furuya, 1996;

Duerig and Melton, 1989). Typical configurations are SMA products with different surface coatings and

composites reinforced with shape memory alloy fibers. In such applications, it is important to understand
how matrix constraints influence the deformation of a fiber that would experience deformation instability

had it not been under the matrix constraint. Such knowledge will benefit the development of composite

materials since matrix constraint could have an effect on fiber transformation, which in turn affects the

internal stress state of the composite. So far, quantitative mechanical modeling and a clear picture of

the transformation process in active SMA fibers under various matrix constraints are not available in the

literature.

To our knowledge, there are two analytical approaches for studying the mechanics of fiber–matrix

system under external loading. The first is based on given constitutive relations of the fiber and matrix
introduced. Along this line, there have been micromechanics models for SMA composite (Song et al., 1999;

Cherkaoui et al., 2000), one-dimensional (1-D) analysis on layered adaptive composites (Roytburd and

Slutsker, 1999a,b, 2001) and the deformation analysis of active materials laid on an elastic foundation

(Truskinovsky and Zanzotto, 1995, 1996). However, analytical solutions for 2-D and 3-D problems are

very complicated mathematically and have not been reported in the literature. The second approach to

handle the problem is to assume the geometry of the martensite domain or deformation patterns (Tsai and

Fan, 2002; Sun and Zhong, 2000; Zhong et al., 2000) and carry out the analysis under certain geometric

assumptions. This approach has several advantages in dealing with a particular type of experimentally
observed geometry of deformation patterns, even though, as pointed out by James (1990), it suffers from a

number of severe limitations (for example, the assumed location of the phase interface may not be energy

minimized).

The present study adopts the second approach to analyze the deformation of the fiber–matrix system.

Instead of introducing the nonlinear constitutive equations of the active NiTi fiber, we quantify the

martensite domain as an elastic transformation inclusion problem. Such simplification is due partially

to experimental observations and empirical assumptions and partially to our intention to make the

problem mathematically tractable. Using this approach, we attempt to clarify and answer the following
questions:

(1) If a band is nucleated in the constrained fiber, what are the stress state and energetic features of the

fiber–matrix system containing this band?
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(2) What is the growth ability of this nucleated band or the mobility of the prescribed interface with further

loading and how this depends on the matrix constraint?

(3) What are the possible deformation patterns of the constrained fiber and the corresponding macroscopic

stress strain responses of the fiber–matrix system during loading?

This paper is organized as follows. In Section 2, the problem investigated is described and formulated.

We assume a pre-existing band in the active fiber and simulate the fiber as an elastic rod containing a single

growing cylindrical transformation inclusion with uniform axisymmetric transformation strain. In Section

3, the analytical expressions of the stress and strain of the inclusion–fiber–matrix (IFM) system are ob-

tained by the principle of superposition and Love�s stress function (Timoshenko and Goodier, 1951). Based

on the stress solution, the energetics of the system is calculated in Section 4. The driving force and the

condition for the quasi-static growth of this existing band are derived. In Section 5, we first give the overall
responses of the system for the case of a single band growth process. After introducing the band nucleation

criteria, the growth ability of a band or the mobility of the interface is examined. Depending on the

magnitude of the constraint, distinct transformation processes and the corresponding deformation patterns

of the fiber are identified. The obtained macroscopic responses of the system as well as the energetic features

are finally discussed in Section 6.

It must be noted that in general the stress-induced transformation of SMA should be treated as a time-

dependent process with thermomechanical coupling. In this paper, the heat effect is neglected. We focus

solely on the mechanical aspect of the isothermal and quasi-static case, which might be a good approxi-
mation for the IFM system under slow loading rates.
2. Problem statement, basic assumptions and governing equations

Consider a long NiTi superelastic fiber with a circular cross section of radius a wrapped by an elastic

matrix of thickness h (Fig. 1). The interface between the fiber and matrix is perfect that the traction and
displacement across it are continuous. During phase transformation induced by the applied load, the

constrained fiber will evolve into a mixture of Austenite and Martensite phases. To make the problem

tractable, we assume that the martensite in the fiber takes the shape of a cylindrical inclusion with interfaces

perpendicular to the loading axis (z axis). The parameter l denotes the length of the inclusion as shown in

Fig. 1. For simplicity, we further assume that the modulus of the martensite and austenite are the same (for

the case of distinct elastic moduli of the two phases, see Stupkiewicz and Petryk, 2002). The transformation

strain inside the band is uniform and axisymmetric with respect to z axis. With the above assumptions, the

transformation process of the constrained fiber under tension can be modeled by the nucleation and growth
process of the inclusion.

To analyze the above IFM system, a cylindrical coordinate system ðr; h; zÞ is used, with the z axis being
placed along the revolutionary axis of the cylinder. The nonzero components of the axisymmetric eigen-

strain e� uniformly distributed in the inclusion can be written as
e�r ¼ e�h ¼ e�1 e�z ¼ e�2 ð1Þ
In cylindrical coordinates, the corresponding displacement components are uð1Þr , uð1Þh , and uð1Þz in the matrix

and uð2Þr , uð2Þh and uð2Þz in the fiber. Throughout this paper, superscripts 1 and 2 will be used to denote the

quantities of the matrix and the fiber respectively. Because of the axisymmetric nature of the problem, the

components uðiÞh (i ¼ 1; 2) vanish and uðiÞr , uðiÞz (i ¼ 1; 2) are independent of h. The nonzero strain components

are eðiÞr , eðiÞh , eðiÞz , cðiÞrz (i ¼ 1; 2) and the nonzero stress components are rðiÞ
r , rðiÞ

h , rðiÞ
z , sðiÞrz (i ¼ 1; 2).

The Governing equations and boundary conditions needed to obtain the above elastic fields of an infinite
long domain are as follows.



Matrix

constraint

 Applied load
NiTi Fiber 

Martensite

(band inclusion)

ah 2    

l  

Martensite austenite
interface

 

Matrix fiber

interface

Fig. 1. A schematic presentation of an IFM system, in which a superelastic NiTi fiber is embedded in an elastic matrix and has been

transformed into a mixture of martensite and austenite phases under external tensile load.
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Kinematical equations:
eðiÞr ¼ ouðiÞr
or

; eðiÞh ¼ uðiÞr
r
; eðiÞz ¼ ouðiÞz

oz
; cðiÞrz ¼ ouðiÞr

oz
þ ouðiÞz

or
ði ¼ 1; 2Þ ð2Þ
Constitutive equations:

For stress components in the inclusion jzj < l=2, r < a, we have
rð2Þ
r ¼ Eð2Þ

1þ vð2Þ
vð2Þ

1� 2vð2Þ
ðhð2Þ

�
� h�Þ þ ðeð2Þr � e�r Þ

�

rð2Þ
h ¼ Eð2Þ

1þ vð2Þ
vð2Þ

1� 2vð2Þ
ðhð2Þ

�
� h�Þ þ ðeð2Þh � e�hÞ

�

rð2Þ
z ¼ Eð2Þ

1þ vð2Þ
vð2Þ

1� 2vð2Þ
ðhð2Þ

�
� h�Þ þ ðeð2Þz � e�z Þ

�

sð2Þrz ¼ Eð2Þ

2ð1þ vð2ÞÞ c
ð2Þ
rz

ð3Þ
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For stress in the other regions
rðiÞ
r ¼ EðiÞ

1þ vðiÞ
vðiÞ

1� 2vðiÞ
hðiÞ þ eðiÞr

� �

rðiÞ
h ¼ EðiÞ

1þ vðiÞ
vðiÞ

1� 2vðiÞ
hðiÞ þ eðiÞh

� �

rðiÞ
z ¼ EðiÞ

1þ vðiÞ
vðiÞ

1� 2vðiÞ
hðiÞ þ eðiÞz

� �

sðiÞrz ¼ EðiÞ

2ð1þ vðiÞÞ c
ðiÞ
rz

ði ¼ 1; 2Þ ð4Þ
where EðiÞ, vðiÞ are Young�s moduli and Poisson�s ratio, and hðiÞ ¼ eðiÞr þ eðiÞh þ eðiÞz , h� ¼ e�r þ e�h þ e�z .
Equation of equilibrium:
orðiÞ
r

or
þ osðiÞrz

oz
þ rðiÞ

r � rðiÞ
h

r
¼ 0

osðiÞrz
or

þ orðiÞ
z

oz
þ sðiÞrz

r
¼ 0

ð5Þ
Boundary conditions:

Stress-free condition of the outer surface requires
rð1Þ
r ¼ sð1Þrz ¼ 0 ðr ¼ aþ hÞ ð6Þ
The continuity of traction and displacement across the wire and matrix interface requires
rð1Þ
r ¼ rð2Þ

r ðr ¼ aÞ
sð1Þrz ¼ sð2Þrz ðr ¼ aÞ
uð1Þr ¼ uð2Þr ðr ¼ aÞ
uð1Þz ¼ uð2Þz ðr ¼ aÞ

ð7Þ
And at the infinity
rðiÞ
r ¼ rðiÞ

h ¼ rðiÞ
z ¼ sðiÞrz ¼ 0 ðjzj ! 1Þ ði ¼ 1; 2Þ ð8Þ
In the next section, the internal stress and strain energy induced in this infinite domain by this single
inclusion will be determined. It will play a central role in the evolution of the finite long fiber matrix system.
3. Solution of the single inclusion problem

Under small strain condition, the original single inclusion problem of Fig. 1 can be decomposed into

three sub-problems as schemed in Fig. 2. In sub-problem I, the matrix deforms under the radial stress and

shear stress prescribed on the inner surface. In sub-problem II the NiTi fiber deforms under the radial stress

and shear stress prescribed on the outer surface, which have the same magnitude but opposite directions as

those in sub-problem I. In sub-problem III the NiTi fiber deforms due to the inclusion without any other

prescribed constraint.

In the following parts, superscripts ‘‘I’’, ‘‘II’’ and ‘‘III’’ are used to denote quantities of sub-problem ‘‘I’’,

‘‘II’’ and ‘‘III’’ respectively (Note: superscripts (i ¼ 1; 2) used to indicate quantities belonging to matrix or
fiber are encompassed by parentheses).
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Fig. 2. A schematic presentation of the decomposition of the original single inclusion problem into three sub-problems.
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3.1. Solutions of sub-problem I and II

A standard way to solve axisymmetric elastic problem is to employ Love�s stress functions /. The stress
and displacement components expressed by / are
rr ¼
o

oz
vr2/

�
� o2/

or2

�
;

rh ¼
o

oz
vr2/

�
� 1

r
o/
or

�
;

rz ¼
o

oz
ð2

�
� vÞr2/� o2/

or2

�
;

srz ¼
o

or
ð1

�
� vÞr2/� o2/

oz2

�
;

ur ¼ � 1þ v
E

o2/
oroz

;

uz ¼
1þ v
E

2ð1
�

� vÞr2/� o2/
oz2

�
;

ð9Þ
where E and v are respectively Young�s modulus and Poisson�s ratio of the isotropic material considered.
The equilibrium equation are satisfied provided that / satisfies bi-harmonic equation



X.-B. Yu et al. / International Journal of Solids and Structures 41 (2004) 2659–2683 2665
r2r2/ ¼ 0 ð10Þ
In order to satisfy the bi-harmonic equation and boundary condition, in solving sub-problem I, the stress

function is assumed as
/I ¼ 2

Z 1

0

½�qI
1ðkÞkrI1ðkrÞ þ qI

2ðkÞkrK1ðkrÞ þ qI
3ðkÞI0ðkrÞ þ qI

4ðkÞK0ðkrÞ� sinðkzÞ sin
kl
2

� �
dk ð11Þ
where I0ðkaÞ, I1ðkaÞ are first-kind modified Bessel function of zero order and first order, and K0ðkaÞ, K1ðkaÞ
are second-kind modified Bessel function of zero order and first order. The unknown functions qI

1, q
I
2, q

I
3, q

I
4

will be determined later by the boundary conditions. Substituting Eq. (11) into Eq. (9), we obtain the stress

and displacement components of the sub-problem I:
sIrz ¼ 2

Z 1

0

½qI
1ðkÞM11ðkrÞ þ qI

2ðkÞM12ðkrÞ þ qI
3ðkÞM13ðkrÞ þ qI

4ðkÞM14ðkrÞ�k3 sinðkzÞ sin
kl
2

� �
dk ð12:1Þ

rI
r ¼ 2

Z 1

0

½qI
1ðkÞM21ðkrÞ þ qI

2ðkÞM22ðkrÞ þ qI
3ðkÞM23ðkrÞ þ qI

4ðkÞM24ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð12:2Þ

rI
z ¼ 2

Z 1

0

½qI
1ðkÞM31ðkrÞ þ qI

2ðkÞM32ðkrÞ þ qI
3ðkÞM33ðkrÞ þ qI

4ðkÞM34ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð12:3Þ

rI
h ¼ 2

Z 1

0

½qI
1ðkÞM41ðkrÞ þ qI

2ðkÞM42ðkrÞ þ qI
3ðkÞM43ðkrÞ þ qI

4ðkÞM44ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð12:4Þ

uIr ¼
2ð1þ vð1ÞÞ

Eð1Þ

Z 1

0

½qI
1ðkÞv11ðkrÞ þ qI

2ðkÞv12ðkrÞ þ qI
3ðkÞv13ðkrÞ þ qI

4ðkÞv14ðkrÞ�k2 cosðkzÞ sin
kl
2

� �
dk

ð12:5Þ

uIz ¼
2ð1þ vð1ÞÞ

Eð1Þ

Z 1

0

½qI
1ðkÞv21ðkrÞ þ qI

2ðkÞv22ðkrÞ þ qI
3ðkÞv23ðkrÞ þ qI

4ðkÞv24ðkrÞ�k2 sinðkzÞ sin
kl
2

� �
dk

ð12:6Þ
The expressions of Mij and vij in these equations are listed in Appendix A.
For sub-problem II, the stress function /II is assumed as
/II ¼ 2

Z 1

0

½�qII
1 ðkÞkrI1ðkrÞ þ qII

3 ðkÞI0ðkrÞ� sinðkzÞ sin
kl
2

� �
dk ð13Þ
where qII
1 , q

II
3 are unknown functions. The corresponding stress and displacement components in the fiber

are obtained as
sIIrz ¼ 2

Z 1

0

½qII
1 ðkÞM11ðkrÞ þ qII

3 ðkÞM13ðkrÞ�k3 sinðkzÞ sin
kl
2

� �
dk ð14:1Þ

rII
r ¼ 2

Z 1

0

½qII
1 ðkÞM21ðkrÞ þ qII

3 ðkÞM23ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð14:2Þ

rII
z ¼ 2

Z 1

0

½qII
1 ðkÞM31ðkrÞ þ qII

3 ðkÞM33ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð14:3Þ
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rII
h ¼ 2

Z 1

0

½qII
1 ðkÞM41ðkrÞ þ qII

3 ðkÞM43ðkrÞ�k3 cosðkzÞ sin
kl
2

� �
dk ð14:4Þ

uIIr ¼ 2ð1þ vð2ÞÞ
Eð2Þ

Z 1

0

½qII
1 ðkÞv11ðkrÞ þ qII

3 ðkÞv13ðkrÞ�k2 cosðkzÞ sin
kl
2

� �
dk ð14:5Þ

uIIz ¼ 2ð1þ vð2ÞÞ
Eð2Þ

Z 1

0

½qII
1 ðkÞv21ðkrÞ þ qII

3 ðkÞv23ðkrÞ�k2 sinðkzÞ sin
kl
2

� �
dk ð14:6Þ
3.2. Solution of sub-problem III

The solution of sub-problem III is available in literature (Zhong et al., 2000). The results are summarized

below:
sIIIrz ¼ 2

Z 1

0

f½qðkÞ � 2ð1� vð2ÞÞ�I1ðkrÞ � krI0ðkrÞgk3f ðkÞ sinðkzÞ sin
kl
2

� �
dk ð15:1Þ

rIII
r ¼ 2

R1
0

½1� 2vð2Þ � qðkÞ�I0ðkrÞ þ kr þ qðkÞ
kr

h i
I1ðkrÞ

n o
k3f ðkÞ cosðkzÞ sin kl

2

� �
dk � Eð2Þ

1�vð2Þ
e�1 jzj < l

2

rIII
r ¼ 2

R1
0

½1� 2vð2Þ � qðkÞ�I0ðkrÞ þ kr þ qðkÞ
kr

h i
I1ðkrÞ

n o
k3f ðkÞ cosðkzÞ sin kl

2

� �
dk jzj > l

2

8<
:

ð15:2Þ

rIII
z ¼ 2

Z 1

0

f½qðkÞ � 2ð2� vð2ÞÞ�I0ðkrÞ � krI1ðkrÞgk3f ðkÞ cosðkzÞ sin
kl
2

� �
dk ð15:3Þ

rIII
h ¼ 2

R1
0

ð1� 2vð2ÞÞI0ðkrÞ � qðkÞ
kr I1ðkrÞ

h i
k3f ðkÞ cosðkzÞ sin kl

2

� �
dk � Eð2Þ

1�vð2Þ
e�1 jzj < l

2

rIII
h ¼ 2

R1
0

ð1� 2vð2ÞÞI0ðkrÞ � qðkÞ
kr I1ðkrÞ

h i
k3f ðkÞ cosðkzÞ sin kl

2

� �
dk jzj > l

2

8<
: ð15:4Þ

uIIIr ¼ 2ð1þ vð2ÞÞ
Eð2Þ

Z 1

0

½krI0ðkrÞ � qðkÞI1ðkrÞ�k2f ðkÞ cosðkzÞ sin
kl
2

� �
dk ð15:5Þ

uIIIz ¼ 2ð1þvð2ÞÞ
Eð2Þ

R1
0
f½qðkÞ � 4ð1� vð2ÞÞ�I0ðkrÞ � krI1ðkrÞgk2f ðkÞ sinðkzÞ sin kl

2

� �
dk þ Az jzj < l

2

uIIIz ¼ 2ð1þvð2ÞÞ
Eð2Þ

R1
0
f½qðkÞ � 4ð1� vð2ÞÞ�I0ðkrÞ � krI1ðkrÞgk2f ðkÞ sinðkzÞ sin kl

2

� �
dk � A l

2
z < � l

2

uIIIz ¼ 2ð1þvð2ÞÞ
Eð2Þ

R1
0
f½qðkÞ � 4ð1� vð2ÞÞ�I0ðkrÞ � krI1ðkrÞgk2f ðkÞ sinðkzÞ sin kl

2

� �
dk þ A l

2
z > l

2

8>><
>>:

ð15:6Þ

where
qðkÞ ¼ 2ð1� vð2ÞÞ þ ka
I0ðkaÞ
I1ðkaÞ

ð16Þ

f ðkÞ ¼ � p
pk4

½1
�

� 2vð2Þ � qðkÞ�I0ðkaÞ þ ka
�

þ qðkÞ
ka

�
I1ðkaÞ

��1

ð17Þ

p ¼ � Eð2Þ

1� vð2Þ
e�1; A ¼ 2vð2Þ

1� 2vð2Þ
e�1 þ e�2 ð18Þ
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3.3. Determination of the unknown functions

The total stress and displacement in the matrix and the fiber now can be easily obtained by superposition

and expressed as
rð1Þ
r ¼ rI

r sð1Þrz ¼ sIrz

uð1Þr ¼ uIr uð1Þz ¼ uIz

rð2Þ
r ¼ rII

r þ rIII
r sð2Þrz ¼ sIIrz þ sIIIrz

uð2Þr ¼ uIIr þ uIIIr uð2Þz ¼ uIIz þ uIIIz

ð19Þ
Now the six boundary conditions in Eqs. (6) and (7) are used to determine the six unknown functions qI
1, q

I
2,

qI
3, q

I
4, q

II
1 and qII

3 in Love�s stress functions. Therefore, a closed solution of the original single inclusion
problem has been established. The explicit expressions of qI

1, q
I
2, q

I
3, q

I
4, q

II
1 and qII

3 can be obtained by

solving these six linear equations. The approach is standard and routine (see Appendix B for details).
4. Energetics of the IFM system during phase transformation

4.1. Elastic strain energy of IFM system

As we have pointed out, the elastic strain energy W induced by the martensite inclusion plays an

important role in the evolution of the IFM system. W can be calculated as (Mura, 1987)
W ¼ 1

2

Z
Rð1Þ

rð1Þ
ij e

ð1Þ
ij dV þ 1

2

Z
Rð2Þ

rð2Þ
ij e

ð2Þ
ij dV ð20Þ
where Rð1Þ and Rð2Þ indicate the regions of the matrix and fiber respectively and eðiÞij is the elastic strain. From

the continuity of the tractions and displacements across the fiber and matrix interface, the stress-free

boundary condition of the outer surface of the matrix and the divergence theorem, Eq. (20) can be further
simplified as
W ¼ � 1

2

Z
X
rð2Þ
ij e

�
ij dV ð21Þ
where X is the domain of the inclusion (martensite phase). Substituting Eqs. (14) and (15) into (21), we get
W ¼ W1 þ W2; ð22Þ

where
W1 ¼
pa2l

1� vð2Þ
Eð2Þðe�1Þ

2H
l
a
; vð2Þ

� �
ð23Þ

H
l
a
; vð2Þ

� �
¼ 1þ a

l

Z 1

0

Gðt; vð2ÞÞ sin
tl
2a

� �� �2
dt ð24Þ

Gðt; vð2ÞÞ ¼ 8ð1þ vð2ÞÞ
pt3

½1
�

� 2vð2Þ � qðtÞ� I0ðtÞ
I1ðtÞ

þ t þ qðtÞ
t

��1

ð25Þ
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qðtÞ ¼ 2ð1� vð2ÞÞ þ t
I0ðtÞ
I1ðtÞ

ð26Þ

W2 ¼ �4pe�1

Z 1

0

f½2ð1� 2vð2ÞÞqII
1 � qII

3 �kaI1ðkaÞ þ k2a2qII
1 I2ðkaÞg sin

kl
2

� �� �2
dk

� 4pe�2

Z 1

0

f½�ð4� 2vð2ÞÞqII
1 þ qII

3 �kaI1ðkaÞ � k2a2qII
1 I2ðkaÞg sin

kl
2

� �� �2
dk ð27Þ
We see that the elastic strain energy W is composed of two parts: W1 is the elastic energy of a single free fiber

containing the inclusion, and W2 is the additional energy caused by the matrix constraint. The variation of

the normalized elastic strain energy W �ð¼ W =a3Eð2Þðe�1Þ
2Þ versus the normalized length of inclusion l=a is

shown in Figs. 3–5, from which the following features can be identified:

(1) For a fiber without matrix constraint (Fig. 3), this strain energy first increases steeply with l and quickly

reaches a peak value (l=a � 0:6), it then decreases with further growth of the martensite inclusion and

finally asymptotically reaches its steady-state value (l=a > 2). There is a nonconvex region in the

energy.

(2) With matrix constraint and therefore additional energy W2, the nonconvex region of the total energy

shrinks and finally disappears with the increase of the matrix constraint (i.e., the increase of Eð2Þ=Eð1Þ

or h=a, see Figs. 4 and 5).
(3) For all the cases with matrix constraint, the asymptotic linear part of W is proportional to the length of

the inclusion. From the figures, this part of energy also increases with the matrix constraint (i.e., the

increase of Eð2Þ=Eð1Þ or h=a).
l/a

0.0 .5 1.0 1.5 2.0 2.5 3.0

W
*

0.0

.2

.4

.6

.8
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2Þ of a constraint-free fiber versus the normalized inclusion length
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4.2. Gibbs and Helmholtz free energy of the system

If the IFM system is further subjected to surface force––Fi, the Gibbs free energy of this IFM system

is
w ¼ 1

2

Z
Rð1Þ

ð~rð1Þ
ij þ rð1Þ

ij Þð~u
ð1Þ
i;j þ uð1Þi;j ÞdV þ 1

2

Z
Rð2Þ

ð~rð2Þ
ij þ rð2Þ

ij Þð~u
ð2Þ
i;j þ uð2Þi;j � e�ijÞdV

�
Z

ð1Þ
Fið~uð1Þi þ uð1Þi ÞdS �

Z
ð2Þ
Fið~uð2Þi þ uð2Þi ÞdS þ DW ch ð28Þ
oR oR
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where ~rðiÞ
ij and ~uðiÞi are the corresponding stresses and displacements caused by the surface force in the

absence of the inclusion. In order to see the physical meaning of w, Eq. (28) is decomposed into four terms:
w ¼ ~wþ DW þ W þ DW ch ð29Þ

where the first term,
~w ¼ 1

2

Z
Rð1Þ

~rð1Þ
ij ~u

ð1Þ
i;j dV þ 1

2

Z
Rð2Þ

~rð2Þ
ij ~u

ð2Þ
i;j dV �

Z
oRð1Þ

Fi~u
ð1Þ
i dS �

Z
oRð2Þ

F ~uð2Þi dS; ð30Þ
corresponds to the Gibbs free energy of the surface force in the absence of the inclusion. In the second term,
DW ¼ 1

2

Z
Rð1Þ

~rð1Þ
ij e

ð1Þ
ij dV þ 1

2

Z
Rð2Þ

~rð2Þ
ij e

ð2Þ
ij dV � 1

2

Z
X

~rð2Þ
ij e

�
ij dV �

Z
oRð1Þ

Fiu
ð1Þ
i dS �

Z
oRð2Þ

Fiu
ð2Þ
i dS ð31Þ
the stress and traction are associated with surface force and the strain and displacements are associated with

the inclusion. Therefore, it is defined as the interaction energy. The third term, W , is the internal elastic

energy induced by the inclusion alone (Eq. (21)). The last term, DW ch, is the change of chemical free energy

during transformation, which arises from the difference in Gibbs free energy between austenite and mar-

tensite. If the austenite phase is taken as the reference state, the total change in chemical free energy is
DW ch ¼
Z
X
DuðrÞdV ¼ DuðT Þpa2l ð32Þ
where DuðT Þ ¼ uMðT Þ � uAðT Þ is the chemical free energy density difference between the two phases. The

change in chemical free energy density is only a function of the temperature. With a linear approximation

around the equilibrium temperature T 0, the following form is commonly used (K is a constant determined

from experiments)
DuðT Þ ¼ uMðT Þ � uAðT Þ ¼ KðT � T 0Þ ð33Þ

Therefore DW ch is a function of T and the volume of the inclusion only.

Under external uniaxial tension the Gibbs free energy of the system can be expressed as the function of

externally applied axial force F , temperature T and the inclusion length l as (taking vð1Þ ¼ vð2Þ for sim-

plicity):
w ¼ � 1

2

ðF ð1ÞÞ2

pððaþ hÞ2 � a2ÞEð1Þ

(
þ ðF ð2ÞÞ2

pa2Eð2Þ

)
L0 �

1

2
ðF ð1Þ þ F ð2ÞÞu0ðlÞ

þ kðT
�

� T0Þpa2 �
1

2
F ð2Þe�z

�
lþ W ðlÞ ð34Þ
In this equation, F ð1Þ and F ð2Þ are the traction act on the matrix and NiTi fiber. By the Saint–Venant

theorem, they satisfy the following two equations
F ð1Þ

pððaþ hÞ2 � a2ÞEð1Þ
¼ F ð2Þ

pa2Eð2Þ ; ð35Þ

F ð1Þ þ F ð2Þ ¼ F ; ð36Þ

except in the region near the end of the system. L0 is the total length of IFM and u0ðlÞ is the elongation of
the IFM caused by the inclusion alone and is a function of the inclusion length l only. Assuming that the

end surface does not deviate much from a plane, it can be approximated by
u0ðlÞ ¼ uð2ÞZ jr¼0;Z¼L0
ð37Þ
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It must be pointed out that the above derivation of the Gibbs free energy of the IFM system is a kind of

approximation since u0ðlÞ and W ðlÞ are appropriated from the solution of the single inclusion problem of

an infinite domain. However, because the dimensionless parameter l
L0
is much less than unity, the difference

between the solution of a bounded domain and that of the infinite domain is expected to be some order of l
L0

and therefore is negligible.

Similarly, the Helmholtz free energy of the IFM system can be derived and expressed by the axial

displacement u, temperature T and the inclusion length l as
/ ¼ 1

2

fpa2Eð2Þ þ p½ðaþ hÞ2 � a2�Eð1Þgðu� u0ðlÞÞu
L0

þ kðT
�

� T0Þ �
1

2

u� u0ðlÞ
L0

Eð2Þe�z

�
pa2lþ W ðlÞ

ð38Þ

It is seen that the martensite band length l appears naturally as an internal variable of the transfor-

mation process of single inclusion in the system.

4.3. Driving force and growth criteria of single band

Under slow loading rates, the whole system can be approximated as an isothermal one. The driving force

for the interface motion can be obtained for force-controlled and displacement-controlled loading condi-

tions respectively as:
f̂ ðF ; T ; lÞ ¼ � ow
ol

				
F ;T

¼ 1

2
ðF ð1Þ þ F ð2ÞÞ ou0

ol
þ 1

2
F ð2Þe�z �

oW
ol

� kðT � T0Þpa2 ð39Þ

f̂ ðu;T ; lÞ ¼ � o/
ol

				
u;T

¼ 1

2

fpa2Eð2Þðu� e�z lÞ þ p½ðaþ hÞ2 � a2�Eð1Þug
L0

ou0
ol

þ 1

2

Eð2Þpa2ðu� u0Þe�z
L0

� oW
ol

� kðT � T0Þpa2

ð40Þ
For the reversible transformation process (without energy dissipation), energy minimization gives (denoting

time rate dð Þ=dt by ð�Þ)
� w
�
				
F ;T

¼ f̂ l
�
¼ 0 ð41Þ

� /
�
				
u;T

¼ f̂ l
�
¼ 0 ð42Þ
Then the criteria for both forward and reverse growths of the band can be immediately obtained in terms of

force and displacement as
f̂ ðF ; T ; lÞ ¼ 0

f̂ ðu; T ; lÞ ¼ 0

�
ð43Þ
Substituting Eqs. (39) and (40) into Eq. (43), the explicit expression of the growth criteria of a band in terms

of F and u are
1

2
ðF ð1Þ þ F ð2ÞÞ ou0

ol
þ 1

2
F ð2Þe�z �

oW
ol

� kðT � T0Þpa2 ¼ 0 ð44Þ
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fpa2Eð2Þðu� e�z lÞ þ p½ðaþ hÞ2 � a2�Eð1Þug
2L0

ou0
ol

þ Eð2Þpa2ðu� u0Þe�z
2L0

� oW
ol

� kðT � T0Þpa2 ¼ 0 ð45Þ
Eqs. (44) and (45) give the F � l, u� l, and F � u relations during transformation as
F ¼ F ðlÞ ¼
2 kðT � T0Þpa2 þ oW

ol


 �
ou0
ol þMe�z

ð46Þ
u ¼ uðlÞ ¼
kðT � T0Þpa2 þ oW

ol


 �
2L0 þ Eð2Þpa2e�z u0 þ ou0

ol l
� �

pa2Eð2Þ ou0
ol þ e�z

� �
þ p½ðaþ hÞ2 � a2�Eð1Þ ou0

ol

ð47Þ
F ¼ F ðuÞ ¼
Eð2Þpa2 ou0

ol þ e�z
� �

þ p½ðaþ hÞ2 � a2�Eð1Þ ou0
ol

ou0
ol þMe�z

� �
L0

u�
Eð2Þpa2e�z u0 þ l ou0

ol

� �
ou0
ol þMe�z

� �
L0

ð48Þ
where
M ¼ pa2Eð2Þ

pððaþ hÞ2 � a2ÞEð1Þ þ pa2Eð2Þ
: ð49Þ
The nominal axial stress–stain relation of the system R33 � E33 (with l as a monotonically increasing

variable) can be obtained from Eqs. (48) and (49) as
R33 ¼
Eð2Þ ou0

ol þ e�z
� �

þ Eð1Þ ðaþhÞ2�a2

pa2
ou0
ol

ou0
ol þMe�z

a
aþ h

� �2

E33 �
Eð2Þe�z u0 þ l ou0

ol

� �
ou0
ol þMe�z

� �
H0

a
aþ h

� �2

ð50Þ
In the above equations, ou0
ol can be calculated from Eqs. (37), (14) and (15) as
ou0
ol

¼ e�z þ
ð1þ vð2ÞÞ

Eð2Þ

Z 1

0

½qð2Þ
1 ðkÞvð2Þ21 ð0Þ þ qð2Þ

3 ðkÞvð2Þ23 ð0Þ�k3 cosðkL0Þdk ð51Þ
and oW
ol can be calculated from Eqs. (22) and (19) as
oW
ol

¼ oW1

ol
þ oW2

ol
ð52Þ
oW1

ol
¼ pa2

1� vð2Þ
Eð2Þðe�z Þ

2
1

�
þ 1

2

Z 1

0

tGðt; vð2ÞÞ sin tl
a

� �
dt
�

ð53Þ
oW2

ol
¼ �2pe�1

Z 1

0

f½2ð1� 2vð2ÞÞqð2Þ
1 � qð2Þ

3 �kaI1ðkaÞ þ k2a2qð2Þ
1 I2ðkaÞgk sinðklÞdk

� 2pe�2

Z 1

0

f½�ð4� 2vð2ÞÞqð2Þ
1 þ qð2Þ

3 �kaI1ðkaÞ � k2a2qð2Þ
1 I2ðkaÞgk sinðklÞdk ð54Þ
The above analysis can be extended to the irreversible process in real material by incorporating energy

dissipation during phase transformation (see Sun and Zhong, 2000).
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5. Evolution of the IFM system under uniaxial tension and deformation patterns of the fiber

5.1. Single martensite band growth

We first consider the transformation process by a single band nucleation and propagation. The external

force F needed for the growth of the inclusion under different matrix constraint is calculated by Eq. (46).

The variations of the scaled force with l=a for different matrix constraints are shown in Figs. 6 and 7. In

Fig. 6, the matrix constraint is increased by increasing the Young�s modulus of the matrix while holding the

thickness of the matrix at h=a ¼ 1; and in Fig. 7, the matrix constraint is increased by increasing the

thickness of the matrix while holding the Young�s modulus at Eð1Þ=Eð2Þ ¼ 5. Other data needed in calcu-

lation are obtained from the experiments:

T ¼ 70 �C, k ¼ 2:98� 10�4 GPa/�C, Eð2Þ ¼ 56:7 GPa, e�z ¼ 3:97%, e�r ¼ � 1
2
e�z , T0 ¼ 14:25 �C, (Shaw and

Kyriakides, 1995). In the calculation, because the initial band length l0 should be of finite value, such as a

typical grain size or microstructure length, we take a ¼ 0:1 mm and l0 ¼ a
100

which is at the scale of the

grain size of this material (the grain size of this material is about 1–10 lm). Features worth mentioning in

these figures are:

(1) For single free fiber, the external force F decreases monotonically when the inclusion starts to grow

from zero. After reaching its minimum value F increases with further growth of the inclusion and finally

asymptotically reaches its steady-state value. As the matrix constraint increases, the decreasing part of
F shrinks (see Eð1Þ=Eð2Þ ¼ 0:1, 0.5, 1 in Fig. 6 and h=a ¼ 0:1, 0.5 in Fig. 7) and eventually disappears (see

Fig. 6 for Eð1Þ=Eð2Þ ¼ infinite and Fig. 7 for h=a ¼ 1) and finally F increases monotonically to its steady-

state value.

(2) With increase in the magnitude of the constraints, the steady-state value of F shifts up and finally ex-

ceeds its starting value at l=a ¼ 0 (see Eð1Þ=Eð2Þ ¼ 1 in Fig. 6 and h=a ¼ 0:5 in Fig. 7).

(3) From the derivation of Section 4.3 we can see that at a given F , o
2wðlÞ
ol2 � o2W ðlÞ

ol2 � oF ðlÞ
ol < 0, which imply the

equilibrium inclusion length l is in the decreasing part of F and is in a nonconvex energy region. There-

fore, the configuration is unstable under fixed applied load (soft device). In such case, for the given F ,
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Fig. 6. Variation of the scaled force F �ð¼ FMÞ of the system versus the normalized inclusion length l=a for different values of Eð1Þ=Eð2Þ

(vð1Þ ¼ vð2Þ ¼ 0:3, h=a ¼ 1).
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if there are two equilibrium inclusion lengths, there will be a jump from the unstable length to the stable

length. If there is only one equilibrium length (as in the case of free-standing fiber), the growth of the

inclusion will be accelerated and the phase transformation will be accomplished under that dead load.

The results in this section and in Section 5.3 again demonstrate that the stability of the equilibrium

band length l depends on matrix constraint.

The above results imply that when the magnitude of the matrix constraint reaches a certain value, single

band growth mode will not last long and a second martensite band (inclusion) will be nucleated and grow.

With strong constraint, single band growth mode will be very difficult and some other deformation mode

will appear. This will be discussed after the following introduction of nucleation and propagation criteria of

a band.
5.2. Band nucleation criteria

By Eq. (46) the nominal stress of the system can be written as
R33 ¼
F

pðaþ hÞ2
¼

2 kðT � T0Þpa2 þ oW
ol


 �
ou0
oh þMe�z

� �
pðaþ hÞ2

ð55Þ
Strictly speaking, band nucleation is a distinct instability process from band growth. For simplicity, we take

the whole nucleation process of a band as a particular instance and equalize the nucleation stress to the

initial growth stress (at the initial band length l0). Therefore, the nucleation criteria of a band can be ex-

pressed as
RN
33 ¼

F

pðaþ hÞ2

					
l¼l0

¼
2 kðT � T0Þpa2 þ oW

ol

		
l¼l0

h i
ou0
ol

		
l¼l0

þMe�z

� 

pðaþ hÞ2

ð56Þ
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By the way, the stress for the steady-state growth of a single band is defined as
RSG
33 ¼ F

pðaþ hÞ2

					
l¼1

¼
2 kðT � T0Þpa2 þ oW

ol

		
l¼1 þ pa2D0

h i
ou0
ol

		
l¼1 þMe�z

� 

pðaþ hÞ2

ð57Þ
Finally it is worth to mention that the nucleation always takes place from the boundary or from a point
of inhomogeneity (defect). The analysis of the stress field as well as the band growth process can be

applied to the cases, for example, the domain is semi-infinite and there is only one interface. In the

following part, Eqs. (56) and (57) will be used as the criteria to analyze the transformation process in the

system.
5.3. Transformation process of the fiber

From Figs. 6 and 7, the growth criteria (Eq. (46)), and the nucleation criteria (Eq. (56)), three fiber
deformation patterns can be identified under uniaxial loading.

Type I: For fibers with weak constraint (Eð1Þ=Eð2Þ ¼ 0:1, 0.5 in Fig. 6 and h=a ¼ 0:1 in Fig. 7), after band

nucleation the stress drops to a minimum and then increases asymptotically to the steady-state propagation

value, which is lower than the nucleation stress. Therefore, after nucleation, the growth of single martensite

band will continue until the fiber is fully transformed. This is called the single band propagation mode

which is dominating under weak constraint.

Type II: For fibers with intermediate constraint (Eð1Þ=Eð2Þ ¼ 1 in Fig. 6 and h=a ¼ 0:5 in Fig. 7), the

beginning of the stress–strain curve is like that of type I. After the stress gradually increases from its
minimum, it will finally reach the value of the nucleation stress to form new band. Therefore further growth

of the first inclusion will stop. In other words, after the inclusion reaches a certain critical length (in Fig. 6

for the case of Eð1Þ=Eð2Þ ¼ 1, the critical length is about 2a, and in Fig. 7 for the case where h=a ¼ 0:5, it is
about a) the growth will stop and a new band will nucleate at another site on the fiber. The new band will

experience the same history as its predecessor until it reaches the critical length again. This procedure will

be repeated. As a result, the nominal stress strain curve will show oscillation. This is called sequential band

nucleation and propagation mode. (Note: the minimum distance between the sequential bands is deter-

mined by the distribution of matrix–fiber shear stress along the interface (see Fig. 8), which creates a
compressive axial force in the fiber to prevent nucleation of new band in the close front of the existing

interface). Moreover, for this characteristic distance, we temporally ignore the interaction between the

inclusions for simplicity. It must be emphasized that the energy calculation of the successive nucleation

process ahead of existing band is a good approximation only in the case where the bands are sufficiently

apart from each other as briefly analyzed here and in Fig. 8. The excessive interaction energy due to the

exponential boundary layers needs to be assessed when there is formation of many closely located inter-

faces. On the other hand, because of this reason, we expect that in the earlier stage of phase transition the

formation of isolated inclusions is more advantage then the close ones and we can ignore the interaction
energy between the inclusions for simplicity. For a complete simulation of the phase transition process,

especially in the later stage when the bands start to merge, the interaction energy must be considered in the

energetics of the IFM system.

Type III: For fibers with strong constraint (Eð1Þ=Eð2Þ ¼ infinite in Fig. 6, and h=a ¼ 1 in Fig. 7), there

is no drop of external stress after the nucleation. Instead, the stress increases monotonically. This implies

that numerous bands will form in the fiber and the deformation of the fiber is macroscopically homo-

geneous.

Based on the above discussion, the following deformation patterns and the nominal stress and strain
curves can be classified:
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• For RN
33 > RSG

33 , the system favors single martensite nucleation and growth.

• For RN
33 < RSG

33 and dR33

dl

		
l¼l0

< 0, the system favors sequential bands nucleation and growth.

• For dR33

dl

		
l¼l0

> 0, the system favors numerous bands formation and macroscopically the fiber tends to

deform homogeneously.

Finally, from the above discussion on the types of deformation patterns and the corresponding condi-

tions, it is seen that the range of parameters (like E, t, h=a, etc) and the corresponding solutions (for

example, multiple interfaces or two interfaces only) can be determined using numerical simulation. As

implied by the results of Figs. 6 and 7, it is expected that solutions with one band (or two interfaces) will be

the only local minima in the case of no matrix constraint, and on the contrary in the case of very stiff matrix
or strong matrix constraint, relevant solutions will have very large number of interfaces.
6. Results of simulation and concluding remarks

6.1. Macroscopic response of the fiber matrix system

Based on the above analysis of deformation patterns and Eqs. (46)–(51), numerical simulation of the
nominal stress and strain curves of the fiber matrix system under displacement control is performed and the
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results are shown in Figs. 9 and 10. Depending on the matrix constraint (either relative Young�s modulus or

the relative thickness of the matrix), three different fiber deformation patterns appear.
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(1) Under weak matrix constraint, the fiber deforms in single band mode (Eð1Þ=Eð2Þ ¼ 0:01, 0.1, 0.5 in Fig. 9

and h=a ¼ 0:01, 0.1 in Fig. 10). Therefore there will be only one stress drop followed by a stress plateau

in the nominal stress–strain curves of the system. As the constraint increases, the propagation stress will

gradually approach the nucleation stress and eventually the deformation will switch to the sequential
mode.

(2) Under intermediate matrix constraint (Eð1Þ=Eð2Þ ¼ 1, 1.5, 2.5 in Fig. 9 and h=a ¼ 0:4, 0.5 in Fig. 10), the

fiber deforms by the sequential mode, hence the nominal stress–strain curves exhibit zigzag oscillations.

Results also reveal that the greater the constraint, the smaller the oscillation magnitude. In Fig. 11, the

variation of elastic strain energy W as define by Eq. (21) with the sequential band formation is plotted,

in which each solid circle corresponds to the event that the former band stops growing while the new

band emerges. The corresponding zigzag stress strain relation and the phase transformation process are

also illustrated in Fig. 11(b) and (c). Since the nominal stress–stain relation is oscillatory, the energy will
exhibit a wave-like landscape.

(3) Under strong matrix constraint (Eð1Þ=Eð2Þ ¼ 5 in Fig. 9 and h=a ¼ 2 in Fig. 10), numerous bands form

along the fiber, which causes the fiber to deform homogeneously. As a result, the corresponding stress–

strain curve of the system exhibits hardening.

To summarize, as the matrix constraint increases, the manner of fiber deformation changes from

localized to homogeneous one. It is interesting to see that there exists similarity between the effect of the

matrix constraint and the effect of A/M interface local heating due to latent heat (‘‘loading rate’’ effect) on
the transformation process and deformation mode of the NiTi fiber. At high loading rate, there is no

enough time for the latent heat to convect into the environment; the local self-heating of the A–M interface

makes it difficult for the existing band to grow. Therefore nucleation of a new band in other locations where

the temperature is low will happen. Displacement-controlled uniaxial tension (see Shaw and Kyriakides,

1997; for details) revealed that as the loading rate increased, the deformation mode of a NiTi fiber switched

from a single band to multiple bands and finally to numerous bands. The prediction we made on the effect

of matrix constraint is also similar to the stress transfer observed during fiber fragmentation in composite

materials (Cox, 1952), in the sense that both affect the growth ability of a localization zone.

6.2. Concluding remarks

Localization and propagation of martensite bands have been commonly observed in the tensile tests of

a constraint-free superelastic NiTi wire and strip, and recently in small tubes (Li and Sun, 2002; Sun and

Li, 2002). Though the mechanism for such deformation instability is still under investigation, it is gene-

rally believed that the cause of this instability lies upon the material�s intrinsic constitutive law during

phase transformation. In this paper, we used an inclusion model to investigate the possible deformation

patterns of the NiTi fiber subjected to different elastic matrix constraints. By examining the growth ability

of a pre-existing inclusion, different deformation modes, which change with the matrix constraint, are

identified.
In our treatment, the inclusion model and a nucleation criterion of a martensite band replace the

nonlinear constitutive relations of the fiber. Here, band nucleation stress is postulated to be the initial

growth stress of a band. The limitation of such an assumption can be reduced by a more rigorous

bifurcation analysis of the governing equations that are derived from the free energy of the system (the

nonconvex free energy of the NiTi fiber plus the convex free energy of the elastic matrix). Such analyses

have been carried out for 2-D and 3-D nonconvex energy (Knowles and Sternberg, 1977; Triantafyllidis

and Aifantis, 1986) and 1-D convex energy plus nonconvex energy (Truskinovsky and Zanzotto, 1995,

1996). 3-D bifurcation analysis of active fiber with matrix constraint might be the task of the future
studies.



W
*=

W
/[a

3
(2

)
E

ε (
1*

)2
]

0

10

20

30

40

50

60

Wave like energy landscape 
formerband stop and new band nucleation 

(5 )(2 ) (3 ) (4 )(1 )

E 3 3

.016 .0 18 .0 20 .022 .0 24 .0 26 .0 28

Σ 33
(M

Pa
)

900

1000

1100

1200

1300

band length control
displacement control

(1 ) (2 ) (3 ) (4 ) (5 )

( 1 )

( 2 )

( 3 )

( 4 )

( 5 )

Martensite band (fully developed)

Martensite band (nucleation)

(A)

(B)

(C)

Fig. 11. (a) Wave-like energy landscape of sequential band nucleation and propagation; (b) corresponding zigzag stress strain curve;

(c) corresponding sequential band nucleation and growth process in the fiber.

2680 X.-B. Yu et al. / International Journal of Solids and Structures 41 (2004) 2659–2683



X.-B. Yu et al. / International Journal of Solids and Structures 41 (2004) 2659–2683 2681
Acknowledgements

The authors are grateful for the financial supports from the Research Grants Council of The Hong Kong

SAR (Project No. HKUST6037/98EHKUST6234/01E), the National Excellent Young Scholar Fund of
China (Projects No. 10125209 and No. 19825107), and the Teaching and Research Award Fund for

Outstanding Young Teachers in High Education Institutions of MOE, P.R.C.

Appendix A
M11ðkrÞ ¼ �2ð1� vÞI1ðkrÞ � krI0ðkrÞ M12ðkrÞ ¼ 2ð1� vÞK1ðkrÞ � krK0ðkrÞ

M13ðkrÞ ¼ I1ðkrÞ M14ðkrÞ ¼ �K1ðkrÞ

M21ðkrÞ ¼ ð1� 2vÞI0ðkrÞ þ krI1ðkrÞ M22ðkrÞ ¼ ð1� 2vÞK0ðkrÞ � krK1ðkrÞ

M23ðkrÞ ¼ �I0ðkrÞ þ
I1ðkrÞ
kr

M24ðkrÞ ¼ �K0ðkrÞ �
K1ðkrÞ
kr

M31ðkrÞ ¼ �ð4� 2vÞI0ðkrÞ � krI1ðkrÞ M32ðkrÞ ¼ �ð4� 2vÞK0ðkrÞ þ krK1ðkrÞ

M33ðkrÞ ¼ I0ðkrÞ M34ðkrÞ ¼ K0ðkrÞ

M41ðkrÞ ¼ ð1� 2vÞI0ðkrÞ M42ðkrÞ ¼ ð1� 2vÞK0ðkrÞ

M43ðkrÞ ¼ � I1ðkrÞ
kr

M44ðkrÞ ¼
K1ðkrÞ
kr

v11ðkrÞ ¼ krI0ðkrÞ v12ðkrÞ ¼ krK0ðkrÞ

v13ðkrÞ ¼ �I1ðkrÞ v14ðkrÞ ¼ K1ðkrÞ

v21ðkrÞ ¼ �4ð1� vÞI0ðkrÞ � krI1ðkrÞ v22ðkrÞ ¼ �4ð1� vÞK0ðkrÞ þ krK1ðkrÞ

v23ðkrÞ ¼ I0ðkrÞ v24ðkrÞ ¼ K0ðkrÞ
Appendix B

The equations for the determination of the unknown functions qI
1, q

I
2, q

I
3, q

I
4, q

II
1 and qII

3 are listed

below:
qI
1ðkÞM11½kðaþ hÞ� þ qI

2ðkÞM12½kðaþ hÞ� þ qI
3ðkÞM13½kðaþ hÞ� þ qI

4ðkÞM14½kðaþ hÞ� ¼ 0 ðB:1Þ

qI
1ðkÞM21½kðaþ hÞ� þ qI

2ðkÞM22½kðaþ hÞ� þ qI
3ðkÞM23½kðaþ hÞ� þ qI

4ðkÞM24½kðaþ hÞ� ¼ 0 ðB:2Þ

qI
1ðkÞM11ðkaÞ þ qI

2ðkÞM12ðkaÞ þ qI
3ðkÞM13ðkaÞ þ qI

4ðkÞM14ðkaÞ ¼ qII
1 ðkÞM11ðkaÞ þ qII

3 ðkÞM13ðkaÞ ðB:3Þ

qI
1ðkÞM21ðkaÞ þ qI

2ðkÞM22ðkaÞ þ qI
3ðkÞM23ðkaÞ þ qI

4ðkÞM24ðkaÞ ¼ qII
1 ðkÞM21ðkaÞ þ qII

3 ðkÞM23ðkaÞ ðB:4Þ

2ð1þ vð1ÞÞ
Eð1Þ ½qI

1ðkÞv11ðkaÞ þ qI
2ðkÞv12ðkaÞ þ qI

3ðkÞv13ðkaÞ þ qI
4ðkÞv14ðkaÞ�

¼ 2ð1þ vð2ÞÞ
Eð2Þ f½qII

1 ðkÞv11ðkaÞ þ qII
3 ðkÞv13ðkaÞ� þ ½krI0ðkaÞ � qðkÞI1ðkaÞ�f ðkÞg ðB:5Þ
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2ð1þ vð1ÞÞ
Eð1Þ ½qI

1ðkÞv21ðkaÞ þ qI
2ðkÞv22ðkaÞ þ qI

3ðkÞv23ðkaÞ þ qI
4ðkÞv24ðkaÞ�

¼ 2ð1þ vð2ÞÞ
Eð2Þ f½qII

1 ðkÞv21ðkaÞ þ qII
3 ðkÞv23ðkaÞ� þ ½ðqðkÞ � 4ð1� vð2ÞÞÞI0ðkaÞ � kaI1ðkaÞ�f ðkÞg

þ 2A
pk4

ðB:6Þ
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