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Abstract

In this paper we study the effect of elastic matrix constraint on the tensile deformation of an active NiTi shape
memory alloy fiber, which, when no matrix constraint is present, will experience stress-induced phase transformation by
nucleation and growth of a macroscopic martensite band. The effect of the constraint is measured by two factors: the
relative Young’s modulus (by dimensionless parameter E?)/E()) and the relative dimension (by dimensionless
parameter //a) of the fiber and the matrix. The transformation process of the fiber through the martensite band growth
under tension is modeled as an embedded elastic fiber containing growing cylindrical transformation inclusions. By
Love’s stress function, the elastic solutions of the inclusion—fiber—matrix system as well as the internal elastic energy
during the transformation are obtained. Analytical expressions of the free energy of the system during the transfor-
mation are also formulated for the case of uniaxial tension. After introducing the band nucleation and growth criteria,
the growth capability of a martensite band is examined. The results demonstrate that, depending on the magnitude of
the matrix constraint, three distinct deformation patterns of the fiber exist: (1) with weak matrix constraint, single band
growth dominates the transformation process of the fiber; (2) with intermediate matrix constraint, sequential bands
nucleation and growth prevails in the fiber; and (3) with strong constraint, numerous bands form and grow, and
macroscopically the fiber tends to deform homogeneously. Parametric studies on the macroscopic stress—strain response
of the fiber—matrix system are performed and the obtained results are discussed.
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1. Introduction

In the last decade, intensive research has been done on the deformation of thermoelastic solids under-
going martensitic phase transition (such as NiTi polycrystalline superelastic shape memory alloy (SMA)
fibers, strips and tubes under tension). Systematic experiments (e.g., Shaw and Kyriakides, 1995; Miyazaki
et al., 1982) demonstrated that the deformation of a NiTi superelastic fiber or strip is realized by the
nucleation and propagation of one or several transformation bands, similar to the Luders bands phe-
nomenon in mild steels. The intrinsic mechanisms underpinning this inhomogeneous deformation, though
known in certain degree, are still being investigated. One of the explanations is that macroscopic consti-
tutive relation of the material exhibits a kind of strain softening (during transformation) and rehardening
(after exhaust of transformation) in a so-called up-down-up nonlinear fashion as first introduced by
Ericken (1975). In the theoretical aspect, considerable efforts have been devoted to the study of such
constitutive relations and related structure responses. Significant progress has been achieved in under-
standing and modeling the behaviors of materials during phase transition (e.g., Triantafyllidis and Bar-
denhagen, 1993; Abeyaratne and Knowles, 1990, 1993; Coleman, 1983).

Parallel to the above fundamental research, Cu- and Ni-based shape memory alloys have been suc-
cessfully embedded in elastic or elastoplastic matrix as the active elements in composite materials and also
in conventional structures to achieve certain control, sensing or actuating functions (e.g., Furuya, 1996;
Duerig and Melton, 1989). Typical configurations are SMA products with different surface coatings and
composites reinforced with shape memory alloy fibers. In such applications, it is important to understand
how matrix constraints influence the deformation of a fiber that would experience deformation instability
had it not been under the matrix constraint. Such knowledge will benefit the development of composite
materials since matrix constraint could have an effect on fiber transformation, which in turn affects the
internal stress state of the composite. So far, quantitative mechanical modeling and a clear picture of
the transformation process in active SMA fibers under various matrix constraints are not available in the
literature.

To our knowledge, there are two analytical approaches for studying the mechanics of fiber-matrix
system under external loading. The first is based on given constitutive relations of the fiber and matrix
introduced. Along this line, there have been micromechanics models for SMA composite (Song et al., 1999;
Cherkaoui et al., 2000), one-dimensional (1-D) analysis on layered adaptive composites (Roytburd and
Slutsker, 1999a,b, 2001) and the deformation analysis of active materials laid on an elastic foundation
(Truskinovsky and Zanzotto, 1995, 1996). However, analytical solutions for 2-D and 3-D problems are
very complicated mathematically and have not been reported in the literature. The second approach to
handle the problem is to assume the geometry of the martensite domain or deformation patterns (Tsai and
Fan, 2002; Sun and Zhong, 2000; Zhong et al., 2000) and carry out the analysis under certain geometric
assumptions. This approach has several advantages in dealing with a particular type of experimentally
observed geometry of deformation patterns, even though, as pointed out by James (1990), it suffers from a
number of severe limitations (for example, the assumed location of the phase interface may not be energy
minimized).

The present study adopts the second approach to analyze the deformation of the fiber—matrix system.
Instead of introducing the nonlinear constitutive equations of the active NiTi fiber, we quantify the
martensite domain as an elastic transformation inclusion problem. Such simplification is due partially
to experimental observations and empirical assumptions and partially to our intention to make the
problem mathematically tractable. Using this approach, we attempt to clarify and answer the following
questions:

(1) If a band is nucleated in the constrained fiber, what are the stress state and energetic features of the
fiber—matrix system containing this band?
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(2) What is the growth ability of this nucleated band or the mobility of the prescribed interface with further
loading and how this depends on the matrix constraint?

(3) What are the possible deformation patterns of the constrained fiber and the corresponding macroscopic
stress strain responses of the fiber-matrix system during loading?

This paper is organized as follows. In Section 2, the problem investigated is described and formulated.
We assume a pre-existing band in the active fiber and simulate the fiber as an elastic rod containing a single
growing cylindrical transformation inclusion with uniform axisymmetric transformation strain. In Section
3, the analytical expressions of the stress and strain of the inclusion—fiber-matrix (IFM) system are ob-
tained by the principle of superposition and Love’s stress function (Timoshenko and Goodier, 1951). Based
on the stress solution, the energetics of the system is calculated in Section 4. The driving force and the
condition for the quasi-static growth of this existing band are derived. In Section 5, we first give the overall
responses of the system for the case of a single band growth process. After introducing the band nucleation
criteria, the growth ability of a band or the mobility of the interface is examined. Depending on the
magnitude of the constraint, distinct transformation processes and the corresponding deformation patterns
of the fiber are identified. The obtained macroscopic responses of the system as well as the energetic features
are finally discussed in Section 6.

It must be noted that in general the stress-induced transformation of SMA should be treated as a time-
dependent process with thermomechanical coupling. In this paper, the heat effect is neglected. We focus
solely on the mechanical aspect of the isothermal and quasi-static case, which might be a good approxi-
mation for the IFM system under slow loading rates.

2. Problem statement, basic assumptions and governing equations

Consider a long NiTi superelastic fiber with a circular cross section of radius a wrapped by an elastic
matrix of thickness # (Fig. 1). The interface between the fiber and matrix is perfect that the traction and
displacement across it are continuous. During phase transformation induced by the applied load, the
constrained fiber will evolve into a mixture of Austenite and Martensite phases. To make the problem
tractable, we assume that the martensite in the fiber takes the shape of a cylindrical inclusion with interfaces
perpendicular to the loading axis (z axis). The parameter / denotes the length of the inclusion as shown in
Fig. 1. For simplicity, we further assume that the modulus of the martensite and austenite are the same (for
the case of distinct elastic moduli of the two phases, see Stupkiewicz and Petryk, 2002). The transformation
strain inside the band is uniform and axisymmetric with respect to z axis. With the above assumptions, the
transformation process of the constrained fiber under tension can be modeled by the nucleation and growth
process of the inclusion.

To analyze the above IFM system, a cylindrical coordinate system (r, 0, z) is used, with the z axis being
placed along the revolutionary axis of the cylinder. The nonzero components of the axisymmetric eigen-
strain ¢ uniformly distributed in the inclusion can be written as

GEe=E 8 =6 (1)

”

In cylindrical coordinates, the corresponding displacement components are u'!), uél), and »!V in the matrix
and u?, uﬁ,z) and u® in the fiber. Throughout this paper, superscripts 1 and 2 will be used to denote the
quantities of the matrix and the fiber respectively. Because of the axisymmetric nature of the problem, the
components ug’j (i = 1,2) vanish and ), u{) (i = 1,2) are independent of 0. The nonzero strain components
are &, &), &, y) (i = 1,2) and the nonzero stress components are ¢, 6\, o), <) (i = 1,2).

The Governing equations and boundary conditions needed to obtain the above elastic fields of an infinite
long domain are as follows.
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Fig. 1. A schematic presentation of an IFM system, in which a superelastic NiTi fiber is embedded in an elastic matrix and has been
transformed into a mixture of martensite and austenite phases under external tensile load.
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where E0), 1) are Young’s moduli and Poisson’s ratio, and 0 = &® + &) 40 0" = ¢* + & + &7
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Boundary conditions:
Stress-free condition of the outer surface requires

A= =0 (r=ath) ©)
The continuity of traction and displacement across the wire and matrix interface requires
A= (r=a)
Wi (r-a o
& = =
= u? (r=a)

o =o) =0 =1 =0 (|z] = o0) (i=1,2) 8)

In the next section, the internal stress and strain energy induced in this infinite domain by this single
inclusion will be determined. It will play a central role in the evolution of the finite long fiber matrix system.

3. Solution of the single inclusion problem

Under small strain condition, the original single inclusion problem of Fig. 1 can be decomposed into
three sub-problems as schemed in Fig. 2. In sub-problem I, the matrix deforms under the radial stress and
shear stress prescribed on the inner surface. In sub-problem II the NiTi fiber deforms under the radial stress
and shear stress prescribed on the outer surface, which have the same magnitude but opposite directions as
those in sub-problem I. In sub-problem III the NiTi fiber deforms due to the inclusion without any other
prescribed constraint.

In the following parts, superscripts “I”, “II”” and “III”” are used to denote quantities of sub-problem “I”,
“II”” and “III” respectively (Note: superscripts (i = 1,2) used to indicate quantities belonging to matrix or
fiber are encompassed by parentheses).
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Fig. 2. A schematic presentation of the decomposition of the original single inclusion problem into three sub-problems.

3.1. Solutions of sub-problem I and I1

A standard way to solve axisymmetric elastic problem is to employ Love’s stress functions ¢. The stress
and displacement components expressed by ¢ are
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where E and v are respectively Young’s modulus and Poisson’s ratio of the isotropic material considered.
The equilibrium equation are satisfied provided that ¢ satisfies bi-harmonic equation
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VWV =0 (10)

In order to satisfy the bi-harmonic equation and boundary condition, in solving sub-problem I, the stress
function is assumed as

” . . (kI
P = 2/ [— 0\ (k)krdy (ki) + p5 (k) kK, (kr) + p3 (k)T (kr) + p} (k) Ko (kr)] sin(kz) sin (5>dk (11)
0
where Iy(ka), I, (ka) are first-kind modified Bessel function of zero order and first order, and Ky (ka), K, (ka)
are second-kind modified Bessel function of zero order and first order. The unknown functions p}, p3, p, p}

will be determined later by the boundary conditions. Substituting Eq. (11) into Eq. (9), we obtain the stress
and displacement components of the sub-problem I:

T = 2/006[/)11 (k)M (kr) + p5(k)Mia (kr) + p5(k)Mis (kr) + py (k) Ma(kr) i sin (kz) sin

ol =2 /0 m[pﬁ (k)Mo (kr) + p& (k)Mo (kr) + pb (k) Moy (kr) + pl (k) Moy (kr) )i cos(kz) sin

i =2 [ k005 + 4081 z04)+ B 100) + P00 st sin (5 )k
(12.5)
= 2D [ b W )+ AR )+ W11 0) + 81 sin) sin ()
(12.6)
The expressions of M;; and y;; in these equations are listed in Appendix A.
For sub-problem II, the stress function ¢" is assumed as
" = 2/00C[—p?(k)kr11 (kr) + pi (k) Iy (kr)] sin(kz) sin (%)dk (13)

where pll, pi! are unknown functions. The corresponding stress and displacement components in the fiber
are obtained as

‘cg =2 /Ooo[p?(k)M“(kr) + p? (k)M13(kr)]k3 sin(kz) sin (%)dk (14.1)
ot =2 [N k) + 91 1M O st sin () (142)
ot =2 [l k) + 1 )M st sin (5 (143
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ag = Z/OOO[P{I(IC)MM (kr) + Pgl(k)Mu (kr))ic cos (kz) sin (g)dk (14.4)
() o0

ull = % /0 [P%l(k)Xll(k”) + Pl;(k)Xla(k’”)]kz cos(kz) sin (g)dk (14.5)
@ o0

u? = % /0 [Plll (k)1 (kr) + Plgl(k)XB (kr)) sin(kz) sin (g) dk (14.6)

3.2. Solution of sub-problem II1

The solution of sub-problem III is available in literature (Zhong et al., 2000). The results are summarized
below:

=2 / {[p(k) = 2(1 — o)1, (kr) — krly (k) Y& £ () sin (k=) sin (%)dk (15.1)
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3.3. Determination of the unknown functions

The total stress and displacement in the matrix and the fiber now can be easily obtained by superposition
and expressed as

) =g! 1) = ¢!

rz rz

W) =yl =y
19
111 ( )
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g’ =0, +0 T T, + T,

r rz
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r
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Now the six boundary conditions in Eqs. (6) and (7) are used to determine the six unknown functions p!, p},
ps, Py, pit and pl! in Love’s stress functions. Therefore, a closed solution of the original single inclusion
problem has been established. The explicit expressions of p!, pb, pi, p}, pil and pl! can be obtained by

solving these six linear equations. The approach is standard and routine (see Appendix B for details).

4. Energetics of the IFM system during phase transformation
4.1. Elastic strain energy of IFM system

As we have pointed out, the elastic strain energy W induced by the martensite inclusion plays an
important role in the evolution of the IFM system. W can be calculated as (Mura, 1987)

! (1), 1 / @@
W == o e’ dV + = o e; dV 20

2 /R(]) oy + 2 It y Ty ( )
where R() and R indicate the regions of the matrix and fiber respectively and ef;) is the elastic strain. From
the continuity of the tractions and displacements across the fiber and matrix interface, the stress-free
boundary condition of the outer surface of the matrix and the divergence theorem, Eq. (20) can be further
simplified as

1 *
W= /Qag,%ijdv (21)
where Q is the domain of the inclusion (martensite phase). Substituting Eqs. (14) and (15) into (21), we get
W =W+ W, (22)
where
na’l 2 /
= B (0 (23)
(L) =14 / " 6, 0| sin (L a (24)
a’ [ Jo ’ 2a

G(t,v?) _3{[1 — 20 —p(t)]ﬁEngter(tt)} (25)
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p(t) =2(1 —v®) + t% (26)

* (kN
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0
We see that the elastic strain energy W is composed of two parts: 17 is the elastic energy of a single free fiber
containing the inclusion, and W is the additional energy caused by the matrix constraint. The variation of
the normalized elastic strain energy W*(= W /a*E? (&})*) versus the normalized length of inclusion //a is
shown in Figs. 3-5, from which the following features can be identified:

(1) For a fiber without matrix constraint (Fig. 3), this strain energy first increases steeply with / and quickly
reaches a peak value (//a = 0.6), it then decreases with further growth of the martensite inclusion and
finally asymptotically reaches its steady-state value (//a > 2). There is a nonconvex region in the
energy.

(2) With matrix constraint and therefore additional energy W5, the nonconvex region of the total energy
shrinks and finally disappears with the increase of the matrix constraint (i.e., the increase of £ /EW
or h/a, see Figs. 4 and 5).

(3) For all the cases with matrix constraint, the asymptotic linear part of W is proportional to the length of
the inclusion. From the figures, this part of energy also increases with the matrix constraint (i.e., the
increase of E?/EW or h/a).

W*

0.0 T T T T T
0.0 5 1.0 1.5 20 25 3.0

I/a

Fig. 3. Variation of the normalized elastic energy W*(= W/E(2>a3(£f)2 ) of a constraint-free fiber versus the normalized inclusion length

l/a.
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Fig. 4. Variation of the normalized elastic energy W*(= W/E@d’(&)) of the system versus the normalized inclusion length //a for
different values of EV/E® (o) =0 = 0.3, h/a = 1).
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Fig. 5. Variation of the normalized elastic energy W*(= W/E(z)a3(s’f)2) of the system versus the normalized inclusion length //a for
different values of h/a () = v = 0.3, EV/E®) = 5).

4.2. Gibbs and Helmholtz free energy of the system

If the IFM system is further subjected to surface force—F;, the Gibbs free energy of this IFM system
is

1 ~(1 Dy /~(1 1 1 -2 2N/~ (2 2 "
= ) /R(l)(o'z(j) + O'z(j))(uz(',j) + ”z(:j))dV'i‘E /R(2> (O-t(j) + O-z(j))(uz(',j) + uzﬁj) - S[j)dV

—/ E(a§1>+u§“)ds—/ F® + u®)ds + A (28)
orR(M)

R
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where &,(-j) and it,@ are the corresponding stresses and displacements caused by the surface force in the

absence of the inclusion. In order to see the physical meaning of y, Eq. (28) is decomposed into four terms:

Y=+ AW+ W+ AW (29)
where the first term,
~ 1 1
U=z / e al) dv + 5 / &l dv — / Fads — / Fil? ds, (30)
2 Jgy VT 2 Jro : ) R
corresponds to the Gibbs free energy of the surface force in the absence of the inclusion. In the second term,
1 (1 (1 1 ~(2) (2) I [ .o (1) @
AW:—/ afA)s(.)quL—/ dPePdy —~ [ 6%edv— | FdVds— | Fu?ds 31
2 R(l) 1] 17 2 R(Z) 1y 17 2 o 17 ij aR(l) 1 aR(Z) 1 ( )

the stress and traction are associated with surface force and the strain and displacements are associated with
the inclusion. Therefore, it is defined as the interaction energy. The third term, W, is the internal elastic
energy induced by the inclusion alone (Eq. (21)). The last term, AW*", is the change of chemical free energy
during transformation, which arises from the difference in Gibbs free energy between austenite and mar-
tensite. If the austenite phase is taken as the reference state, the total change in chemical free energy is

NWMZ/A¢@dV=AMTﬁfz (32)

where Ap(T) = M(T) — ¢*(T) is the chemical free energy density difference between the two phases. The
change in chemical free energy density is only a function of the temperature. With a linear approximation
around the equilibrium temperature 7°, the following form is commonly used (K is a constant determined
from experiments)

Ap(T) = o™ (T) — o(T) =K(T — T°) (33)

Therefore AW is a function of T and the volume of the inclusion only.
Under external uniaxial tension the Gibbs free energy of the system can be expressed as the function of
externally applied axial force F, temperature 7 and the inclusion length / as (taking v'") = v® for sim-

plicity):

1 (F(l))2 (F(z))z |
T2 Lo — = (FV 4+ F®
’ 2 { n((a+h)* — a?)EM e (7 2( + F 9 )uo (1)

1
+ (k(T — Ty)na® — §F<2>s;> I+ w(l) (34)
In this equation, F) and F® are the traction act on the matrix and NiTi fiber. By the Saint-Venant
theorem, they satisfy the following two equations
FO F®
n((a+h)* —a)E0)  ma?E@)’

(35)

FU 4 FO — F, (36)

except in the region near the end of the system. L, is the total length of IFM and u,(/) is the elongation of
the IFM caused by the inclusion alone and is a function of the inclusion length / only. Assuming that the
end surface does not deviate much from a plane, it can be approximated by

uo(l) = ul|,_osy, (37)
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It must be pointed out that the above derivation of the Gibbs free energy of the IFM system is a kind of
approximation since uy(/) and W(l) are appropriated from the solution of the single inclusion problem of
an infinite domain. However, because the dimensionless parameter - is much less than unity, the difference
between the solution of a bounded domain and that of the infinite domam is expected to be some order of - ’
and therefore is negligible.

Similarly, the Helmholtz free energy of the IFM system can be derived and expressed by the axial
displacement u, temperature 7 and the inclusion length / as

1 {na®E? + n[(a+ h)* — a?ED} (u — uo(1))u

$=3 Lo

1u—uy(/)
Ly

+ (k(T Ty) — E<2)8;‘>nazl +w(l)
(38)

It is seen that the martensite band length / appears naturally as an internal variable of the transfor-
mation process of single inclusion in the system.

4.3. Driving force and growth criteria of single band

Under slow loading rates, the whole system can be approximated as an isothermal one. The driving force
for the interface motion can be obtained for force-controlled and displacement-controlled loading condi-
tions respectively as:

. 1 Ouy 1 aW
_(FM 2 0 _ _ 2
fF, T, ])= al 2(F + FY) a1 —|—2F T k(T — Ty)na (39)
f(uaTvl): - ol
1 {na®E® (u— 1)+ nf(a+h) — P EVu} duy 1 EDma®(u—ug)er oW
=3 I Aty g M -Toma
(40)

For the reversible transformation process (without energy dissipation), energy minimization gives (denoting
time rate d( )/dz by (*))

—J1=0 (41)

F.T

-y

—§ =Fi= (42)

u,T

Then the criteria for both forward and reverse growths of the band can be immediately obtained in terms of
force and displacement as

F(F,T,)=0
{ fgu, T, 1)):0 (43)

Substituting Egs. (39) and (40) into Eq. (43), the explicit expression of the growth criteria of a band in terms
of F and u are

l(F(l) 4 F(Z))

duy 1oy W
2

—_— — —_—— —_— 2:
6[+2 T k(T — Ty)ma” =0 (44)
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{na®E® (u — 1) + n[(a+ h)* — a2 EOu} duy  EDma®(u — ug)e: oW
z - 7z k(T -T =0 45
2L, ol 2L, or ~MT —Tojma (43)

Egs. (44) and (45) give the F — [, u — [, and F — u relations during transformation as

2[k(T — Ty)na* + %V]

F=F()= 46
0 %"-FMS;‘ (46)
k(T — T, 2Ly + E®) + 20
uzu(l)z [ ( 0)7;561 } 0 na’e (uo K ) (47)
na?E® (S0 + 8;*) +7f(a+h) — @]ED =

u % 2 Ou u
Fe Pl = E@na? (% 4 pa)+ nl(a+h)’ —aEO S E(Z)nz: & (uo + 15) (48)

(% + Mer)Ly (S0 + Me:) Lo

where
2p(2)

Mo na’E . (49)

n((a+h)* — a®)EV + na?E®

The nominal axial stress—stain relation of the system X33 ~ E33 (with / as a monotonically increasing
variable) can be obtained from Egs. (48) and (49) as

o _EOCEre) rEVE S o N B9 1) [ a Y 50
33 — ou Qu, ( )
T+ Me a+h (G +Me)Hy \a+h

In the above equations, 2 can be calculated from Egs. (37), (14) and (15) as

’El

we . (1+0®) [
6_10 =& (E(42)) / lp 2)(k)721 (0) + P3 (1‘)}{(223)(0)VC3 cos (kL) dk (51)
0

and ” can be calculated from Eqgs. (22) and (19) as
oW oW, oW,

TR (52
M md® 1 [ o e [
W = 1 — U(2> E (82) 1 + E /0 tG(t, v ) Sin E dt (53)
aW2 22
— = 2me { (1—20? — pPkal, (ka) + K*d®p'\? I (ka) }k sin(kl) dk

— 2ng} / {[=(4 = 20)p® + pPkal, (ka) — kK*a®p'\ I (ka) Yk sin(kl) dk (54)

The above analysis can be extended to the irreversible process in real material by incorporating energy
dissipation during phase transformation (see Sun and Zhong, 2000).
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5. Evolution of the IFM system under uniaxial tension and deformation patterns of the fiber
5.1. Single martensite band growth

We first consider the transformation process by a single band nucleation and propagation. The external
force F needed for the growth of the inclusion under different matrix constraint is calculated by Eq. (46).
The variations of the scaled force with //a for different matrix constraints are shown in Figs. 6 and 7. In
Fig. 6, the matrix constraint is increased by increasing the Young’s modulus of the matrix while holding the
thickness of the matrix at 4/a = 1; and in Fig. 7, the matrix constraint is increased by increasing the
thickness of the matrix while holding the Young’s modulus at £ /E® = 5. Other data needed in calcu-
lation are obtained from the experiments:

T =70°C, k=298 x 10°* GPa/°C, E® = 56.7 GPa, ¢! = 3.97%, ¢/ = —1¢, T, = 14.25 °C, (Shaw and
Kyriakides, 1995). In the calculation, because the initial band length /, should be of finite value, such as a
typical grain size or microstructure length, we take a = 0.1 mm and /y = 3§z which is at the scale of the
grain size of this material (the grain size of this material is about 1-10 pm). Features worth mentioning in
these figures are:

(1) For single free fiber, the external force ' decreases monotonically when the inclusion starts to grow
from zero. After reaching its minimum value F increases with further growth of the inclusion and finally
asymptotically reaches its steady-state value. As the matrix constraint increases, the decreasing part of
F shrinks (see E(V/E® = 0.1, 0.5, 1 in Fig. 6 and #/a = 0.1, 0.5 in Fig. 7) and eventually disappears (see
Fig. 6 for E(V/E® = infinite and Fig. 7 for h/a = 1) and finally F increases monotonically to its steady-
state value.

(2) With increase in the magnitude of the constraints, the steady-state value of F shifts up and finally ex-
ceeds its starting value at //a = 0 (see E(V/E® =1 in Fig. 6 and h/a = 0.5 in Fig. 7).

(3) From the derivation of Section 4.3 we can see that at a given F, 629‘6(1) ~ azgr;u) ~ 61251) < 0, which imply the

equilibrium inclusion length / is in the decreasing part of ' and is in a nonconvex energy region. There-

fore, the configuration is unstable under fixed applied load (soft device). In such case, for the given F,

60

= —
s r -
-x" Free standing fiber
L EME®=0.1
—— eME®=05
— . EME @z
—— e"E@=infinite (rigid matrix)

I/la

Fig. 6. Variation of the scaled force F*(= FM) of the system versus the normalized inclusion length //a for different values of E() /E?
"V =0v? =03, h/a=1).
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if there are two equilibrium inclusion lengths, there will be a jump from the unstable length to the stable
length. If there is only one equilibrium length (as in the case of free-standing fiber), the growth of the
inclusion will be accelerated and the phase transformation will be accomplished under that dead load.
The results in this section and in Section 5.3 again demonstrate that the stability of the equilibrium
band length / depends on matrix constraint.

The above results imply that when the magnitude of the matrix constraint reaches a certain value, single
band growth mode will not last long and a second martensite band (inclusion) will be nucleated and grow.
With strong constraint, single band growth mode will be very difficult and some other deformation mode

will appear. This will be discussed after the following introduction of nucleation and propagation criteria of
a band.

5.2. Band nucleation criteria

By Eq. (46) the nominal stress of the system can be written as

F 20k(T — Ty)na*> + &
2y = 7= [au( 0) alz] (55)
n(a+h) (%24 Me2)m(a+h)

Strictly speaking, band nucleation is a distinct instability process from band growth. For simplicity, we take
the whole nucleation process of a band as a particular instance and equalize the nucleation stress to the
initial growth stress (at the initial band length /). Therefore, the nucleation criteria of a band can be ex-
pressed as

N F

2[k(T — Ty)ma* + %—V;/ |1:10}
n(a+h)’

= (56)
I=ly (%0 =1, +Msj)n(a +h)*

33 7
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By the way, the stress for the steady-state growth of a single band is defined as

F
nla+h)’

B Z[k(T — Ty)na* + aa_v;/ |l:oo + na2D0} (7

oo (%0 . —|—Msj)n(a + h)2

Finally it is worth to mention that the nucleation always takes place from the boundary or from a point
of inhomogeneity (defect). The analysis of the stress field as well as the band growth process can be
applied to the cases, for example, the domain is semi-infinite and there is only one interface. In the
following part, Egs. (56) and (57) will be used as the criteria to analyze the transformation process in the
system.

SG __
Z‘33 -

1=

5.3. Transformation process of the fiber

From Figs. 6 and 7, the growth criteria (Eq. (46)), and the nucleation criteria (Eq. (56)), three fiber
deformation patterns can be identified under uniaxial loading.

Type I: For fibers with weak constraint (E() /E® = 0.1, 0.5 in Fig. 6 and #/a = 0.1 in Fig. 7), after band
nucleation the stress drops to a minimum and then increases asymptotically to the steady-state propagation
value, which is lower than the nucleation stress. Therefore, after nucleation, the growth of single martensite
band will continue until the fiber is fully transformed. This is called the single band propagation mode
which is dominating under weak constraint.

Type 1I: For fibers with intermediate constraint (E(")'/E®? =1 in Fig. 6 and h/a = 0.5 in Fig. 7), the
beginning of the stress—strain curve is like that of type 1. After the stress gradually increases from its
minimum, it will finally reach the value of the nucleation stress to form new band. Therefore further growth
of the first inclusion will stop. In other words, after the inclusion reaches a certain critical length (in Fig. 6
for the case of E(V/E® = 1, the critical length is about 2a, and in Fig. 7 for the case where #/a = 0.5, it is
about a) the growth will stop and a new band will nucleate at another site on the fiber. The new band will
experience the same history as its predecessor until it reaches the critical length again. This procedure will
be repeated. As a result, the nominal stress strain curve will show oscillation. This is called sequential band
nucleation and propagation mode. (Note: the minimum distance between the sequential bands is deter-
mined by the distribution of matrix—fiber shear stress along the interface (see Fig. 8), which creates a
compressive axial force in the fiber to prevent nucleation of new band in the close front of the existing
interface). Moreover, for this characteristic distance, we temporally ignore the interaction between the
inclusions for simplicity. It must be emphasized that the energy calculation of the successive nucleation
process ahead of existing band is a good approximation only in the case where the bands are sufficiently
apart from each other as briefly analyzed here and in Fig. 8. The excessive interaction energy due to the
exponential boundary layers needs to be assessed when there is formation of many closely located inter-
faces. On the other hand, because of this reason, we expect that in the earlier stage of phase transition the
formation of isolated inclusions is more advantage then the close ones and we can ignore the interaction
energy between the inclusions for simplicity. For a complete simulation of the phase transition process,
especially in the later stage when the bands start to merge, the interaction energy must be considered in the
energetics of the IFM system.

Type III: For fibers with strong constraint (E) /E®?) = infinite in Fig. 6, and 4/a = 1 in Fig. 7), there
is no drop of external stress after the nucleation. Instead, the stress increases monotonically. This implies
that numerous bands will form in the fiber and the deformation of the fiber is macroscopically homo-
geneous.

Based on the above discussion, the following deformation patterns and the nominal stress and strain
curves can be classified:
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e For X}, > 257, the system favors single martensite nucleation and growth.

e For 2} < 2% and d%’ 1, <0, the system favors sequential bands nucleation and growth.
e For di% iy > 0, the system favors numerous bands formation and macroscopically the fiber tends to

deform homogeneously.

Finally, from the above discussion on the types of deformation patterns and the corresponding condi-
tions, it is seen that the range of parameters (like E, v, #/a, etc) and the corresponding solutions (for
example, multiple interfaces or two interfaces only) can be determined using numerical simulation. As
implied by the results of Figs. 6 and 7, it is expected that solutions with one band (or two interfaces) will be
the only local minima in the case of no matrix constraint, and on the contrary in the case of very stiff matrix
or strong matrix constraint, relevant solutions will have very large number of interfaces.

6. Results of simulation and concluding remarks
6.1. Macroscopic response of the fiber matrix system

Based on the above analysis of deformation patterns and Eqs. (46)—(51), numerical simulation of the
nominal stress and strain curves of the fiber matrix system under displacement control is performed and the
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results are shown in Figs. 9 and 10. Depending on the matrix constraint (either relative Young’s modulus or

the relative thickness of the matrix), three different fiber deformation patterns appear.
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(1) Under weak matrix constraint, the fiber deforms in single band mode (E") /E® = 0.01, 0.1, 0.5 in Fig. 9
and #/a = 0.01, 0.1 in Fig. 10). Therefore there will be only one stress drop followed by a stress plateau
in the nominal stress—strain curves of the system. As the constraint increases, the propagation stress will
gradually approach the nucleation stress and eventually the deformation will switch to the sequential
mode.

(2) Under intermediate matrix constraint (E(V/E® =1, 1.5, 2.5 in Fig. 9 and #/a = 0.4, 0.5 in Fig. 10), the
fiber deforms by the sequential mode, hence the nominal stress—strain curves exhibit zigzag oscillations.
Results also reveal that the greater the constraint, the smaller the oscillation magnitude. In Fig. 11, the
variation of elastic strain energy W as define by Eq. (21) with the sequential band formation is plotted,
in which each solid circle corresponds to the event that the former band stops growing while the new
band emerges. The corresponding zigzag stress strain relation and the phase transformation process are
also illustrated in Fig. 11(b) and (c). Since the nominal stress—stain relation is oscillatory, the energy will
exhibit a wave-like landscape.

(3) Under strong matrix constraint (E(")'/E® = 5 in Fig. 9 and #/a = 2 in Fig. 10), numerous bands form
along the fiber, which causes the fiber to deform homogeneously. As a result, the corresponding stress—
strain curve of the system exhibits hardening.

To summarize, as the matrix constraint increases, the manner of fiber deformation changes from
localized to homogeneous one. It is interesting to see that there exists similarity between the effect of the
matrix constraint and the effect of A/M interface local heating due to latent heat (“loading rate” effect) on
the transformation process and deformation mode of the NiTi fiber. At high loading rate, there is no
enough time for the latent heat to convect into the environment; the local self-heating of the A-M interface
makes it difficult for the existing band to grow. Therefore nucleation of a new band in other locations where
the temperature is low will happen. Displacement-controlled uniaxial tension (see Shaw and Kyriakides,
1997; for details) revealed that as the loading rate increased, the deformation mode of a NiTi fiber switched
from a single band to multiple bands and finally to numerous bands. The prediction we made on the effect
of matrix constraint is also similar to the stress transfer observed during fiber fragmentation in composite
materials (Cox, 1952), in the sense that both affect the growth ability of a localization zone.

6.2. Concluding remarks

Localization and propagation of martensite bands have been commonly observed in the tensile tests of
a constraint-free superelastic NiTi wire and strip, and recently in small tubes (Li and Sun, 2002; Sun and
Li, 2002). Though the mechanism for such deformation instability is still under investigation, it is gene-
rally believed that the cause of this instability lies upon the material’s intrinsic constitutive law during
phase transformation. In this paper, we used an inclusion model to investigate the possible deformation
patterns of the NiTi fiber subjected to different elastic matrix constraints. By examining the growth ability
of a pre-existing inclusion, different deformation modes, which change with the matrix constraint, are
identified.

In our treatment, the inclusion model and a nucleation criterion of a martensite band replace the
nonlinear constitutive relations of the fiber. Here, band nucleation stress is postulated to be the initial
growth stress of a band. The limitation of such an assumption can be reduced by a more rigorous
bifurcation analysis of the governing equations that are derived from the free energy of the system (the
nonconvex free energy of the NiTi fiber plus the convex free energy of the elastic matrix). Such analyses
have been carried out for 2-D and 3-D nonconvex energy (Knowles and Sternberg, 1977; Triantafyllidis
and Aifantis, 1986) and 1-D convex energy plus nonconvex energy (Truskinovsky and Zanzotto, 1995,
1996). 3-D bifurcation analysis of active fiber with matrix constraint might be the task of the future
studies.
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Appendix A

Mll(kl") = 72(1 — U)Il (kl”) — kl”]o(k}”) Mlz(kl”) = 2(1 — U)Kl (k}") — k}"Ko(kl’)
Mlg(kl") :[1(](1") M14(kr) = 7K1(kl")
= (

Moy (kr) = (1 = 20) Iy (kr) + kel (kr) Moy (kr) = (1 — 20)Ko(kr) — krK; (kr)
Mas(hr) = —Io(kr) + E{k”) Mo (k) = —Ko(kr) — K‘lg‘r)

M31 (k}") = —(4 - 21))10(](]”) - k}”]] (k}”) M32(k}”) = —(4 - 2U)K0(kl") + ki’K] (kl")
M33 (kl") = [O(kl") M34(k}") = K()(kl")

M41(kl") = (1 — 21))]0(](}") M42(k}") = (1 — ZU)K()(ICI”)

My (kr) = 711/(:*) My (kr) = Kllgfr)

a1 (kr) = krlo (k) yp0(kr) = kKo (kr)

nia(kr) = =L(kr)  y14(kr) = Ky (kr)

Ao (kr) = =4(1 — v)ly(kr) — krly (kr) g (kr) = —4(1 — v)Ko(kr) + krK, (kr)
Yos(kr) = Lo(kr)  sou(kr) = Ko(kr)

Appendix B

The equations for the determination of the unknown functions pl, p5, pi, pi, pi' and pl are listed
below:

pr (k)M lk(a + h)] + p3(k)Muz[k(a + h)] + p3 (k)Mys[k(a + h)] + py(k)Malk(a + h)] = 0 (B.1)
p1 (k)Mo [k(a + h)] + p5 (k)M [k(a + h)] + p3 (k)Mas[k(a + h)] + py(k)Moa[k(a + h)] = 0 (B.2)
PY (k)M (ka) + ph(k)Myx(ka) + pl(k)Mys(ka) + pl(k)Mia(ka) = pll (k)M (ka) + p¥ (k)Mys(ka)  (B.3)
Py (k)Ma (ka) + pb (k)M (ka) + p(k)Mas (ka) + pl (k)Maa(ka) = pi' (k)Mo (ka) + pi (k)Mas(ka)  (B.4)

2(1+0D)
EM

@
== P\ (k)71 (ka) + p3' (k)13 (ka)] + [krlo(ka) — p(k) 11 (ka)]f (k) } (B.5)

[0} (k) 711 (ka) + p3 (k)12 (ka) + py (k) x5 (ka) + py(k) 14 (ka)]
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)
% [0 (k) 121 (ka) + p5 (k) 12 (kat) + p3 (k) 123 (kat) + ply (k) 124 (Kat))
2<1 + U(z)) . 1 2)
= = {1 (k)1 (k) + 5 (k)05 (k)] + [(p(k) — 4(1 = o)) (ka) — kal (ka) (k) }
. j—; (B.6)
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